© UCLM

Evaluación para el Acceso a la Universidad Curso 2019/2020

Materia: MATEMÁTICAS II

Instrucciones: El estudiante deberá resolver **CUATRO** ejercicios, si resuelve más, se corregirán solo los cuatro primeros. Los ejercicios deben redactarse con claridad, detalladamente y razonando las respuestas. Se podrá utilizar cualquier tipo de calculadora. Cada ejercicio completo puntuará 2,5 puntos. Duración de la prueba: 1 hora y 30 minutos.

1. a) [1,25 puntos] Determina razonadamente los valores de a para los que la matriz A no tiene inversa

$$A = \begin{pmatrix} 1 & a+1 & 2 & 1 \\ 0 & 2 & 1 & a \\ a & 0 & 1 & 0 \\ a & 0 & 2 & 0 \end{pmatrix}$$

- b) [1,25 puntos] Calcula razonadamente todos los posibles valores x, y, z para que el producto de las matrices $C = \begin{pmatrix} x & 1 \\ y & z \end{pmatrix}$ y $D = \begin{pmatrix} 3 & 1 \\ 1 & -1 \end{pmatrix}$ conmute.
- 2. a) [1,75 puntos] Discute el siguiente sistema de ecuaciones lineales en función del parámetro $a \in \mathbb{R}$:

$$\begin{cases} ax & -ay & -z = a \\ ax & -ay & = a \\ ax & +2y & -z = 1 \end{cases}$$

- b) [0,75 puntos] Resuelve razonadamente el sistema anterior para a=2, si es posible.
- 3. Dada la función

$$f(x) = \begin{cases} \frac{3}{x-2} & \text{si} \quad x < 2\\ \cos(\pi x) & \text{si} \quad 2 \le x \le 3\\ \frac{\ln(x-2)}{3-x} & \text{si} \quad x > 3 \end{cases}$$

- a) [1,5 puntos] Determina razonadamente los puntos en los que la función es continua, calcula los puntos en los que es discontinua y clasifica el tipo de discontinuidad, si los hubiera.
- b) [1 punto] Calcula razonadamente el siguiente límite: lím $\frac{xe^{-x}}{1 + 2x \cos(x^2)}$.
- 4. Sea la función $f(x) = \frac{x^2 2x + 1}{x^2 + 1}$.
 - a) [1,5 puntos] Halla razonadamente las coordenadas de los extremos relativos de la función f(x) y clasifícalos.
 - b) [1 punto] Calcula la ecuación de la recta tangente y la ecuación de la recta normal a la gráfica de la función f(x) en el punto de abscisa x = 0.
- 5. a) [1,25 puntos] Calcula razonadamente la siguiente integral: $\int \frac{3x-2}{x^2-2x+1} dx.$
 - b) [1,25 puntos] Calcula, justificadamente, el área acotada del recinto limitado por la gráfica de la función $q(x) = -x^3 + 2x^2 + 3x$ y el eje de abscisas.

Evaluación para el Acceso a la Universidad Curso 2019/2020

Materia: MATEMÁTICAS II

Instrucciones: El estudiante deberá resolver **CUATRO** ejercicios, si resuelve más, se corregirán solo los cuatro primeros. Los ejercicios deben redactarse con claridad, detalladamente y razonando las respuestas. Se podrá utilizar cualquier tipo de calculadora. Cada ejercicio completo puntuará 2,5 puntos. Duración de la prueba: 1 hora y 30 minutos.

6. Dados los planos
$$\pi_1 \equiv 2x + y + z - 2 = 0$$
 y $\pi_2 \equiv \begin{cases} x = -1 + \lambda - \mu \\ y = -\lambda + \mu \\ z = -2 + 2\lambda \end{cases}$.

- a) [1 punto] Calcula razonadamente el ángulo que forman los dos planos.
- b) [1,5 puntos] Halla razonadamente el volumen del tetraedro formado por el punto P(3, -3, 2) y los puntos de corte del plano π_1 con los ejes coordenados.

7. Dados el plano
$$\pi \equiv \begin{cases} x = -1 + \mu \\ y = 1 + \lambda + a\mu \\ z = 1 + 2\lambda - \mu \end{cases}$$
 y la recta $s \equiv \begin{cases} x - 2y = 1 - b \\ z = -3 \end{cases}$.

- a) [1,5 puntos] Calcula razonadamente el valor de los parámetros a y b para que la recta s esté contenida en el plano π .
- b) [1 punto] Si a = 0 y b = 3, calcula razonadamente la ecuación en forma implícita de la recta r que pasa por el punto P(1, -1, -8) es paralela al plano π y perpendicular a la recta s.
- 8. a) En un servicio de emergencias el 60 % de los avisos que se reciben se clasifican con el código amarillo, el 30 % con el naranja y el 10 % con el rojo. Se sabe que el porcentaje de avisos recibidos que son falsas alarmas es 3 % en el caso de código amarillo, 2 % en el naranja y 1 % en el rojo. Si se recibe un aviso,
 - a.1) [0,5 puntos] ¿qué probabilidad hay de que se trate de una falsa alarma?
 - a.2) [0,75 puntos] Si se sabe que el aviso recibido no ha sido falsa alarma, ¿qué probabilidad hay de que haya sido un aviso código rojo o naranja?
 - b) Si en una centralita se reciben 9 avisos,
 - b.1) [0,5 puntos] ¿Qué probabilidad hay de que la centralita reciba 2 o menos avisos naranjas?
 - b.2) [0,75 puntos] ¿Qué probabilidad hay de que todos los avisos sean amarillos o naranjas?

\mathbf{n}	p k	0.01	0.05	0.10	0.15	0.20	0.25	0.30	0.33	0.35	0.40	0.45	0.49	0.50
9	0	0.9135	0.6302	0.3874	0.2316	0.1342	0.0751	0.0404	0.0272	0.0207	0.0101	0.0046	0.0023	0.0020
	1	0.0830	0.2985	0.3874	0.3679	0.3020	0.2253	0.1556	0.1206	0.1004	0.0605	0.0339	0.0202	0.0176
	2	0.0034	0.0629	0.1722	0.2597	0.3020	0.3003	0.2668	0.2376	0.2162	0.1612	0.1110	0.0776	0.0703
	3	0.0001	0.0077	0.0446	0.1069	0.1762	0.2336	0.2668	0.2731	0.2716	0.2508	0.2119	0.1739	0.1641
	4	0.0000	0.0006	0.0074	0.0283	0.0661	0.1168	0.1715	0.2017	0.2194	0.2508	0.2600	0.2506	0.2461
	5	0.0000	0.0000	0.0008	0.0050	0.0165	0.0389	0.0735	0.0994	0.1181	0.1672	0.2128	0.2408	0.2461
	6	0.0000	0.0000	0.0001	0.0006	0.0028	0.0087	0.0210	0.0326	0.0424	0.0743	0.1160	0.1542	0.1641
	7	0.0000	0.0000	0.0000	0.0000	0.0003	0.0012	0.0039	0.0069	0.0098	0.0212	0.0407	0.0635	0.0703
	8	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0004	0.0008	0.0013	0.0035	0.0083	0.0153	0.0176
	9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0003	0.0008	0.0016	0.0020