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MEASURING THE IMPACT OF POLLUTION ON PROPERTY PRICES: 

OBJECTIVE VS. SUBJECTIVE POLLUTION INDICATORS IN SPATIAL 

MODELS 

José-María Montero Lorenzo, Román Mínguez Salido
1
 y Gema Fernández-Avilés 

Calderón 

Universidad de Castilla-La Mancha 

 

ABSTRACT 

Much work has been done in the context of the hedonic price theory to estimate 

the impact of air quality on housing prices. Hedonic specifications have improved 

enormously compared to the early models and current research even considers the 

spatial argument as a key factor. However, in the best of cases, empirical research only 

slightly confirms the hedonic theory. These empirical results go against both common 

sense and theory, which led us to suspect that the problem is not specification but the 

way air quality is measured. Research has been conducted using objective measures of 

air quality, but probably what house buyers include in their utility function is their 

perception of such quality. Thus, subjective measures are needed. 

In this article we propose a kind of spatial hedonic models and compare the 

results obtained with objective and subjective measures of air quality in Madrid (Spain). 

Results are quite different and suggest that perceived air quality measures are the 

variable to be included when applying a hedonic house price model. 

Key words: housing prices, environment, subjective measure of pollution, spatial 

hedonic models, cluster, kriging. 

JEL-codes: Q51, R32, C23. 
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1. INTRODUCTION  

According to the theoretical literature, it is reasonable to assume that air 

pollution enters into the utility function of potential house buyers. It is therefore no 

surprise that hedonic house price models that incorporate environmental variables 

among the set of explanatory variables are becoming increasingly popular. 

In the context of the hedonic price theory, the traditional approach to this 

problem has been to use the housing market to infer the implicit prices of these 

nonmarket goods (see Freeman 1993 for a comprehensive review of property value 

models for measuring the value of environmental amenities). Under standard 

assumptions of perfect competition, information and mobility and the maximization of 

well-behaved preferences, hedonic theory unambiguously predicts that the implicit price 

function relating housing prices to an environmental amenity will be positively sloped, 

all else equal.  

But the question is that empirical research does not confirm the hedonic theory. 

Smith and Huang’s (1995) meta-analysis suggested that a one-unit reduction of PM10 

(mg/m3) results in a 0.05-0.10 percent increase in property values. Boyle and Kiel 

(2001) found that air studies produced mixed results and posited that measurement 

factors are not generally known to homebuyers. Jackson (2001) offered no final 

observations on the consistency of findings and he called for a more systematic study. 

Simons and Saginor (2006), who included air pollution together with concentrated 

animal feeding operations, obtained a different sign in the coefficient of the variable 

depending on whether the model included positive amenities or not.  

In summary, the literature concerning the effects of contamination on property 

values reveals that the effect of air pollution on property value is far from being 

conclusive. What is more, there are serious doubts that air pollution significantly affects 

the price of properties. Additionally, the study type may also generate different results.  

Recently a successful line of research has emerged that includes the spatial 

argument in the hedonic specification. As Straszheim (1988) stated many years ago, it 

may not be appropriate to assume that the implicit prices of housing attributes are 

stationary we use the same term as Carruthers and Clark (2010) across geographical 

space, even within a big city. The rationale behind this is that, on the supply side, homes 
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near each other tend to be similar and, on the demand side, homebuyers regularly 

emulate one another’s behavior. The result is a process of spatial interaction among 

market participants, which at least suggests that the first stage hedonic price function 

should be modified to include a spatial lag of its dependent variable (Anselin, 1988; 

Anselin and Bera, 1998). This spatial lag can be interpreted as a flexible fixed effect 

that absorbs the existing and unobserved spatial correlation structure of supply and/or 

demand. Recommended literature that considers the spatial argument in the 

specification of the hedonic model includes the pioneer works of Can (1990), Can 

(1992), Kim et al., (2003), Theebe (2004), Brasington and Hite (2005), Anselin and Le 

Gallo (2006), Anselin and Lozano-Gracia (2008) and Osland (2010), among many 

others.  

But again, results are not conclusive. In the best of cases, clean air has a 

negligible influence on housing prices, which does not fit the hedonic theory.  

What is wrong in the preliminary studies? Maybe nothing is wrong but, as stated 

in Chay and Greenstone (1998), exogenous differences in air quality are extremely 

difficult to isolate, because the “true” relationship between air pollution and property 

prices may be obscured in cross-sectional analysis by unobserved determinants of 

housing prices that co-vary with air pollution. For example, areas with high levels of 

pollution tend to have well educated populations with higher per capita income and 

population densities. Economic activity is also a driving force in the determination of 

property values, but differences across space in the level of activity may also be behind 

changes in the level of pollution. Of course, the above circumstances lead to a spurious 

positive relationship between pollution and property values. When Chay and 

Greenstone use the conventional cross-sectional estimates of the relationship between 

property values and PM10 they conclude that the relationship is weak, unstable and 

indeterminate.  

The other possibility is that the concept of air pollution that enters into the utility 

function of potential house buyers is perceived pollution rather than objective 

(measured) pollution. It is important to bear in mind that indirect methods like the 

hedonic strategy  are based on actual transactions and empirical measurements and 

assume that decision makers possess all the necessary information and always act 

rationally, attempting to maximize their personal utility. However, when in the process 
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of deciding their location, house buyers weigh up one property or location against 

another, their choices are not necessarily rational. As Berezansky et al. (2010) states, 

their rationality is essentially bounded by available information, limited processing 

capacity, errors of judgment, and an inability to foretell the future. Additionally, 

perceived pollution is not an instantaneous concept like, at least during a short period of 

time, the price of a dwelling, but one that is created over a long period and needs 

another long period of time (due to the above mentioned factors) to be modified.  

In our opinion, one more question remains to be answered: When measuring air 

quality in large cities, what do house buyers (and citizens in general) understand as 

clean air? Our previous research (see Mínguez et al., 2010) suggests that, at least in 

European cities, people decide the location of their house according to a range of 

factors, including: personal or family income, commercial properties, communications, 

schools, medical centers, etc. but not according to the level of pollution, as living in the 

city alone implies  a polluted environment. What do they mean by a “clean air” location 

in a large city? Probably a neighborhood located near parks and open areas. This 

suspicion has been confirmed by Berezansky et al. (2010) in the case of the City of 

Haifa. This is another important reason in favor of using subjective air pollution 

variables in spatial housing price hedonic models. 

In brief, house buyers do not decide how much they are willing to pay for clean 

air on the basis of  the complete information provided by monitoring stations (they 

probably do not even  know how to interpret it), but rather according to their 

perceptions, perceptions that are not instantaneous but generated over a long period of 

time. Additionally, in the case of using environmental interpolated variables as 

explanatory variables, “objective" and "subjective" air pollution maps could be quite 

different.  

As a consequence, if there is not a strict positive correlation between objective 

and subjective measurements of pollution, the literature, regardless of whether or not it 

includes the spatial argument, is not using the right pollution variable or index.  

The above statements suggest classifying neighborhoods according to subjective 

environmental measures (resident perceptions), which could be enormously more 
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informative than objective environmental measures when it comes to accounting for the 

willingness to pay for clean air or other environmental factors. 

We have focused our empirical analysis on Madrid (Spain). There are several 

important reasons for choosing Madrid as a study case: (i) Most of the empirical 

research in the literature refers to American cities. This is the main reason; (ii) 

population is highly concerned with the environment in general and air quality in 

particular (iii) construction, particularly residential building, is of great  importance to 

the overall economy; and (iii) it can be said that in Madrid there is almost perfect 

information about air quality all over the city (both excellent ratios monitoring 

sites/population and monitoring sites/surface), which makes it possible to ignore the 

problems related to how much is known about air quality variables, because, as is well 

known, the impact of air quality variables on the hedonic price function depends on how 

much is known about them (Clark and Allison, 1999).  

We constructed a massive data base in 2009 including 11,796 dwellings (after 

depuration). Apart from price, we have registered more than thirteen core variables for 

each along with subjective and objective air pollution indicators representative of the 

level of pollution.  

After this introduction, section 2 is devoted to both briefly delineating the way 

we propose to construct APIs based on interpolated objective pollution measures and 

the construction and comparison of both objective and subjective environmental air 

quality maps. In section 3 we briefly describe the Spatial Durbin Model, which is the 

specification that we use in this article to measure the impact of clean air on housing 

prices. Section 4 is devoted to the case study: Madrid City. First we give some details 

about air pollution (both objective and subjective measures) and the housing sector in 

the study area. Second, we comment on both the air quality and housing data sets used 

in this research. Third, we report the main results obtained from the inclusion of 

subjective environmental measures in the spatial hedonic specification proposed in 

Section 3. Finally, some concluding remarks are reported in Section 5. 
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2 OBJECTIVE AND SUBJECTIVE AIR QUALITY MAPS IN MADRID CITY: 

THE BIG DIFFERENCE 

The objective level of pollution is usually measured by monitoring stations and 

then the objective pollution estimation approach consists of the following stages: 

(i) Measurements of the selected pollutants are collected. 

(ii) In some cases, an Air Pollution Index (API) is created (Montero and 

Fernández-Avilés, 2009a, b; Montero et al., 2010). This is not usually the case. 

Researchers normally use one or two pollutants, the most visible in smog. 

(iii) The values of some specific pollutants or the API are kriged over the area 

under  study or at the points where sampled dwellings are located. This step allows us 

to match dwelling prices and objective pollution variables. 

As is well known, kriging is a univariate procedure which interpolates the values 

of the target random function at unobserved locations using the available observations 

of the same random function. This interpolation produces the best linear unbiased 

estimator and uses the covariance or variogram function (the spatial equivalent of the 

autocorrelation function in time series analysis) to account for the correlation structure 

in making interpolative estimates. Kriging techniques are the usual strategy for 

estimation because they take into account the spatial dependencies of pollution values, 

which is an extremely important feature to take into account when it comes to 

estimating pollution variables (see Cressie 1993 for details).  

However, kriging, and specifically ordinary kriging, the procedure 

recommended in Anselin and Lozano-Gracia (2008), has some drawbacks that could 

make it unsuitable for measuring the impact of air quality on dwelling prices. First, the 

amount of actual data on pollution is enormously scarce with respect to the number of 

dwellings in the sample because there used to be between 20 and 30 monitoring stations 

in the best of cases in large cities. This means that estimates are needed for practically 

all locations where dwelling prices are sampled. Second, it is an interpolative method 

and, as a consequence, provides a weighted mean of the values of neighboring locations 

as estimates. That means that "peak-estimates" cannot be obtained, "peak-estimates", 

the value of which exceeds the values of neighboring locations. Obviously this feature 
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makes the OK strategy strongly dependent on where monitoring stations are located. 

And we have to bear in mind that the location of monitoring stations in a large city does 

not obey statistical criteria (design of an optimal monitoring network) but other criteria 

that include municipal regulations. And third, in large cities, most of the monitoring 

stations are located in the city centre, only a few being on the periphery. This implies 

that in peripheral neighborhoods, OK estimates tend to be near to the mean pollution 

value and their variance is higher than desirable.   

These three drawbacks (among others) make OK estimates too unreliable to be 

included in a spatial (or not) hedonic housing price model to evaluate the impact of air 

pollution on dwelling prices and could be one of the reasons why empirical results 

contradict or, in the best of cases, slightly confirm, the hedonic theory.  

In order to form neighborhood clusters with objective measures of pollution, 

following EU directives, we have interpolated (OK) the values of sulphur  dioxide 

(SO2), nitrogen oxides (NOx) —which is a generic term for mono-nitrogen oxides (nitric 

oxide (NO) and nitrogen dioxide (NO2))—, carbon monoxide (CO), particulate matter 

(PM10)
,
 and ground-level ozone (O3), in the non observed neighborhoods. Subsequently, 

we have created an API for the complete set of neighborhoods in Madrid. This is the 

inverse procedure to that used in the literature (first computing the index and then 

kriging it), but it can be shown (Myers 1983) that it leads to lower error variance. 

Indeed, let the variables of different pollutants, 
1 2, , , KX X X , be intrinsic 

stationary stochastic processes of order zero. The two options to linearly estimate an 

API are: 

(i) Elaborating a synthetic index with the K environmental variables provided by the 

n monitoring stations,  iAPI s , and after that computing the kriged estimates of 

this index for the total number of m neighborhoods: 

   *

1

m

j i i

j

API API


s s ,    1, ,j m  

for    
1

K

i k k i

k

API a X


 s s A X ,  1, , Ka a A and    1 , ,i K iX X   X s s being the 

vectors of Principal Components or DP2 weights (Montero et al., 2009) and 

variables, respectively. 
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(ii) Kriging each original variable    1 , , KX Xs s  for the m neighborhoods, and then 

computing the synthetic index of the interpolated variables    1 , , KX X 
s s  as 

follows: 

     * *

1 1 1

nK K

j j k k j k i k i

k k i

API a X a X
  

   s A X s s  

Following Myers (1983, pp.634), it can be demonstrated that: 

       *

j j j jVar API API Var API API    
   

s s s s  

Finally we have classified neighborhoods into four groups. For this purpose, we 

have conducted a model-based cluster procedure implemented in the MCLUST 

algorithm. This procedure is based on the assumption that data are generated by normal 

multivariate distributions with different covariance matrices. That is to say, the data 

generation processes are a mixture of normal distributions (Fraley and Raftery, 1999, 

2002, 2010). The covariance matrices are decomposed in terms of volume, shape and 

orientation which allows for the definition of a range of models and their implied 

type of distributions, considering a complete range of decomposition possibilities. All 

the potential models are summarized Table 1 (Fraley and Raftery, 2010). 

TABLE 1: Cluster models 

Model Identifier Distribution Volume Shape Orientation 

EII Spherical Equal Equal NA 

VII Spherical Variable Equal NA 

EEI Diagonal Equal Equal Coordinate Axes 

VEI Diagonal Variable Equal Coordinate Axes 

EVI Diagonal Equal Variable Coordinate Axes 

VVI Diagonal Variable Variable Coordinate Axes 

EEE Ellipsoidal Equal Equal Equal 

EEV Ellipsoidal Equal Equal Variable 

VEV Ellipsoidal Variable Equal Variable 

VVV Ellipsoidal Variable Variable Variable 

  

The choice of both a specific model and a specific number of groups allows for 

maximum likelihood estimation of the different group matrices (assuming a mixture of 
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normal distributions). Then, observations can be assigned to a group. To select both the 

model class and the number of groups, MCLUST algorithms proceeds to maximizing a 

reparametrization of the BIC criteria where the maximum is taken over all the models 

and number of potential groups considered.  

In our case, the results of applying this methodology for clustering Madrid 

neighborhoods on the basis of objective measures of SO2, NOx, NO2, CO, PM10 and O3 

are summarized in Table 2.   

TABLE 2: BIC values for cluster models using objective measures of pollution 

Groups EII VII EEI VEI EVI VVI EEE EEV VEV VVV 

1 -911.6 -911.4 -647.9 -647.9 -647.9 -647.9 -79.8 -79.8 -79.8 -79.8 

2 -646.7 -617.2 -364.6 -326.7 -341.1 -322.3 -47.3 17.8 13.4 45.8 

3 -608.1 -490.6 -271.2 -190.9 -352.6 -94.6 8.2 62.2 215.1 229.8 

4 -486.5 -414.5 -215.3 -167.3 -241.3 -98.2 31.4 44.1 117.4 203.9 

5 -443.2 -363.7 -215.9 -109.7 -237.7 -46.5 33.1 97.2 143.3 109.6 

6 -447.9 -322.2 -250.4 -87.4 -219.7 -43.6 43.9 75.1 74.7 105.5 

 

The maximum of the BIC was found for the VVV model and 3 groups. 

However, we have opted for the VVV-4 group classification because the value of the 

BIC is very close to the maximum and facilitates interpretation enormously in view of 

the well-known facts on pollution in Madrid (see Figure 1a). 

On the other hand, the usual way of measuring subjective environmental 

amenities is annoyance scores (Poor et al., 2001; Jacquemin et al., 2007 are 

recommended references). However, our objective is to rank areas of a city according to 

both objective and subjective air pollution measurements, and to examine the level of 

concordance between the neighborhood clusters under the objective and the subjective 

approach. This is why we prefer census information to survey information, and we 

subjectively characterized the areas by the percentage of residents that agree or disagree 

with the environmental feature they were questioned about. The advantages of this 

approach include non-dimensionality and common range [0-1], which enormously 

facilitates interpretation. In addition, somehow this approach could be interpreted as a 

way of averaging the results obtained in surveys based on annoyance scales. It could 

also be viewed as a consensus measure of air quality.  
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When it comes to clustering the neighborhoods on the basis on residents' 

perception of pollution (RP), we use the percentage of residents in the neighborhood 

who state that the neighborhood is seriously polluted. Following the same procedure as 

in the objective case, the results of BIC are reported in Table 3. 

TABLE 3: BIC values for cluster models using residents’ perceived pollution 

Groups EII VII EEI VEI EVI VVI EEE EEV VEV VVV 

 1 640.6 640.6 681.1 681.1 681.1 681.1 829.9 829.9 829.9 829.9 

2 766.2 793.1 767.9 793.7 771.8 802.5 823.3 918.6 846.1 922.9 

3 809.1 835.1 803.6 842.7 811.6 880.1 863.2 894.1 919.4 920.9 

4 806.3 845.7 795.5 843.9 810.4 854.2 855.4 903.5 900.8 889.6 

5 789.2 849.2 783.0 864.8 796.5 835.2 833.0 884.1 880.3 856.0 

6 792.6 839.5 798.8 850.3 761.4 841.3 867.6 885.8 850.2 815.1 

 

Again, the best model is the VVV, and two groups record the maximum of BIC. 

However, we can see that there are no significant differences in BIC for 2, 3 or 4 

groups. Taking this into account, we decided to choose the VVV-4 group option to both 

facilitate the interpretation of the cluster and to compare it to the four group cluster 

selected when clustering was performed in terms of the objective API variable. Figure 

1b reports the result of the clustering process with residents' perceptions. 

There are large differences between the two neighborhood classifications. More 

specifically, Pearson's correlation coefficient between objective and subjective values of 

pollution in Madrid neighborhoods stands at 0.20 and Spearman's ranks coefficient is 

0.39. 

When comparing the neighborhood clustering obtained using objective estimates 

of pollution and perceived (subjective) pollution values (Figures 1a, 1b), it can be 

noticed that both the "objective" and "subjective" clusters coincide in the peripheral 

neighborhoods, the most depressed area of Madrid in terms of residential construction. 

But, precisely in these peripheral areas, only the "subjective" cluster classifies the 

Southeast area of the city in the most polluted group (red neighborhoods). Indeed, the 

Southeast area of the city is made up of ‘arid’ neighborhoods with important 

construction activity in the years prior to the economic crisis and they are very close to 

industrial areas. Obviously, these circumstances lead to a high degree of suspended 
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particulates. Objective clustering classifies this area in the best group (green one), the 

reason being both that the neighborhoods included in it are close to the second best area 

(the light blue one) and also the shortage of monitoring stations in the Southeastern part 

of the city. Therefore, it is no surprise that OK estimates are below the mean of the city. 

FIGURE 1a: Classification of Madrid 

neighborhoods according to kriged 

objective measures of  pollution 

FIGURE 1b: Classification of Madrid 

neighborhoods according to residents’ 

perception of pollution 

  
Note: 1. Severe problems of pollution; 2. Medium-high problems of pollution; 3. Low levels of pollution; 

4. No pollution problems. 

Objective clustering classifies most of the neighborhoods next to the main ring 

road of the city (M30), a very busy road, in the second best group, the reason once again 

being  the influence of the low pollutant values recorded by the neighborhoods outside 

the ring road (with the exception of the Southern part). However, when residents' 

perceptions are taken into account, although the majority of these neighborhoods are 

also included in the second best cluster (the light blue one), the number of them in the 

purple cluster is not negligible, as could be expected.  

As for downtown Madrid, very clear differences are found between "objective" 

and "subjective" clusters. The best neighborhoods in Madrid City show the highest 

objective level of pollution, but most of them are perceived as the second best air 

pollution group of the city. The reason is that residents tend to identify good air quality 

with living near a large green area. This is precisely the case of the neighborhoods close 

to the Retiro Park and Casa de Campo, the two largest green areas in Madrid. However, 

traffic density in these neighborhoods is among the highest in Madrid. Perceived 
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pollution is also lower than interpolated (based on actual values) pollution in the 

pedestrian areas of the city (the city center). 

It can be also noticed that in the "subjective" cluster, some neighborhoods are 

incrusted in apparently uniform clusters. This situation cannot occur in the "objective" 

cluster, because the kriging estimator is based on a weighted mean. This circumstance 

can be clearly appreciated (Figure 1b) in the area next to both the main bus and train 

station of the city (red neighborhoods with a high density of traffic and highly floating 

population incrusted in an area of purple neighborhoods). 

In summary, we can conclude that perceived and objective pollution in Madrid 

are two different concepts, and since perception is the concept that consumers include in 

their utility function, perceived pollution could be the appropriate measure to take into 

account when it comes to estimating the impact of air quality on house prices. 

Obviously, this finding leads us to encourage decision makers to go beyond 

environmental initiatives and raise public awareness. 

 

3. SPECIFICATION AND ESTIMATION OF SPATIAL HEDONIC MODELS 

THAT INCLUDE INTERPOLATIVE VARIABLES 

Hedonic models are the usual strategy to estimate the impact of pollution on 

housing prices. This specification corresponds to the equation: 

        i=1,...,nT

i i i iy Pol     z δ     (3) 

where yi represents the log of the price of the i-th dwelling, Poli indicates the 

level of pollution at the location where the i-th dwelling is sited, 

1 2( , ,..., )T T

i i i kiz z zz includes the k individual and areal characteristics of the i-th dwelling, 

 is the intercept of the equation and 
i is a random disturbance that is assumed to 

distribute as 2(0, )N  . The impact of pollution on the housing price, or semi elasticity, is 

given by i

i

y

Pol






.  

As is well known, under the assumptions of homoscedasticity, non 

autocorrelation and multivariate normal distribution of the vector of random 



15 

 

disturbances, the OLS estimation method provides both BLUE estimates of the model 

parameters and the estimated variance of such parameters. However, when pollution is 

estimated by a kriged indicator (in our case an API) OLS is not consistent due to the 

need to interpolate the measured values of pollution at the sites where sampled 

dwellings are located, causing a potential errors-in-variables problem. The potential 

“errors in variables” aspect of interpolated air pollution measures (see Anselin and 

Lozano-Gracia 2008) has been ignored —barring a few exceptions— by the literature. 

But in our opinion, it is a core aspect when dealing with interpolated environmental 

measures as regressors. The reason is that the use of spatially interpolated values of 

pollution results in a prediction error which may be correlated to the overall model 

disturbance term. And this could lead to simultaneity bias in an OLS regression. In this 

case, the API would be an endogenous regressor (Anselin and Lozano-Gracia, 2008; 

Minguez et al., 2010) and the OLS estimation of  would be non consistent. We 

therefore used the instrumental variables method to solve this problem. In our case, 

following Anselin and Lozano-Gracia (2008), we took longitude and latitude 

coordinates as instruments and subsequently the Two-Stage Least Squares (TSLS) 

method has been applied for estimating purposes. As a result, we obtain consistent 

estimates.   

However, model (3) does not take into account the spatial argument, that is to 

say, the existing spatial dependencies among the prices of dwellings. As has been 

shown in the literature (Anselin, 1988), the omission of spatial effects can result in 

estimators being inefficient and, what is worse, inconsistent, regardless of the 

estimation method. In order to capture the existing spatial dependencies in the prices of 

dwellings, following LeSage and Pace (2009), the specification we propose is the 

spatial Durbin model (SDM). We chose this model because it is general and robust, 

since it is the most general spatial model. In fact, the usual spatial specifications, 

―spatial autoregressive models (SAR) and spatial error models (SEM) ― are particular 

cases of SDM. In addition, SDM provides consistent estimates for the majority of 

spatially correlated data generating processes.  

The SDM is given by the following matrix equation: 

2     N( , )n n      y Wy i Xβ WXγ ε ε 0 I    (4) 
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where y is a (nx1) vector including the observations of the logarithms of the 

house prices, X is a (nxk) matrix comprising the observations of the individual and areal 

characteristics associated to each dwelling and other spatial variables such as the API, 

surface, condition, mean mortgage in the neighborhood, etc., 
ni  is a (nx1) unit vector for 

the intercept (removed from X  to avoid problems of exact multicollinearity in the 

estimation) and W is the (nxn) spatial weights matrix. Obviously, Wy and WX capture 

the spatial lags corresponding to the dependent and the variables included in X , 

respectively. On the other hand,  is a spatial parameter that measures the existing 

spatial dependence of the dependent variable,  is the intercept parameter, 2 is the 

variance of the noise under homoskedasticity and β and γ are (kx1) vectors of 

parameters associated to the independent variables and their lags, respectively. While in 

the SDM model we impose the restrictions 0,  γ 0 , the non spatial hedonic model (3) 

is obtained as a particular case.    

As is well known, the specifications that include the spatial lag of the 

endogenous variable, Wy , as a regressor, produce an endogeneity bias, because the 

spatial lagged variable is correlated to ε . However, under the assumption of 

multivariate normal distribution of the disturbances, the estimation of the parameters of 

the model, 2( , , , , )T

  θ β γ , can be carried out by the ML procedure. For this purpose, 

following LeSage and Pace (2009), we first re-write (4) as:  

           
1 1 2( ) [ ] ( )      N( , )n n n n         y I W i Xβ WXγ I W ε ε 0 I           (5) 

 But, unfortunately, if X includes an endogenous regressor (this could be the case 

of an API) ML estimates are non consistent. This circumstance led us to use the TSLS 

method for estimation purposes because the estimates it produces are consistent 

(Anselin and Lozano-Gracia, 2008). In this case, instruments are not only needed for the 

API but also for Wy . It is common practice in the literature (Kelejian and Robinson, 

1993; Kelejian and Prucha, 1998; Anselin, 2007) to take the successive powers 

of WX : 2 3, , , , p
WX W X W X W X  as instruments for Wy , excluding the API indicator 

from X  to avoid the endogeneity bias. 

It is important to note that spatial spillovers (effects of changes in independent 

variables on the dependent variable) are not given by any vector of parameters directly 
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in SDM. This is why, once again following LeSage and Page (2009), we express 

equation (5) as follows: 

1 11 12 1 1

1
2 21 22 2 2 2

1

1 2
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Now, we can compute both the direct and indirect effects, respectively, of a 

change in xir and xjr observations on yi as: 

( )       and      ( )i i

r ii r ij

ir jr

y y
S S

x x

 
 

 
W W  

Both impacts are nonlinear functions of the estimated parameters and, in 

addition, depend on the parameters associated to the regressor
rX as well as on  . 

Since, in general, the magnitude of the impact of a variable
rX differs across 

regions, Pace and LeSage (2006) define the Average Direct Impact (ADI), Average 

Total Impact (ATI) and Average Indirect Impact (AII) of regressor 
rX as follows: 
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n r n

ADI n trace

ATI n

AII ADI ATI


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



 

S W

i S W i      (7) 

Finally, one of the main advantages of SDM is that if we set some restrictions in 

this model, it is possible to obtain other well-known spatial models. Setting γ 0 leads 

to the SAR model, and setting  γ β  the SEM is obtained. Since the SDM framework 

nests those models, it is robust under different specifications. Another advantage is that 

once SDM, SAR and SEM have been estimated by ML, we can perform LR tests to 

select the appropriate specification. 

In summary, for comparative purposes, we will estimate the hedonic house 

prices model using OLS, TSLS and ML when it includes the objective interpolated 

indicator API, whereas only OLS and ML will be used if pollution is indicated by 
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subjective resident perceptions because in this case there is no reason for suspecting the 

existence of a potential errors-in-variables problem. 

 

4. CASE STUDY: INCORPORATING A SUBJECTIVE MEASURE OF AIR 

QUALITY INTO A SPATIAL HEDONIC HOUSING PRICE MODEL FOR 

MADRID 

4.1. Housing market and pollution 

Madrid (the capital of Spain) is the third-most populous city in the European 

Union (pop. 6,271,638 in 2009, 3,213,271 of which live in the city). Like other capitals 

in the world, Madrid is the city where Government institutions, the Parliament, 

embassies, main museums, central offices of the most relevant companies, etc. are 

located. This has made Madrid a large city covering 60,430.76 ha, together with a large 

peripheral metropolitan area with more than five million inhabitants that it is closely 

related to. Obviously, these relations imply movement and a large number of trips and 

regular flows of both population and also goods, etc., which has lead to a complex 

transportation system. 

More specifically, Madrid has both a dense ring road network (M-30, M-40, M-

45, M-50) and a dense radial highway network. Both networks have enormously 

improved accessibility to emerging industrial and high economic activity areas, 

resulting in competitiveness and dynamism. However, as a negative consequence of the 

above positive factors, road traffic has become the main source of atmospheric 

pollution. 

In addition, Madrid has the fourth largest European airport and is the centre for 

train communications (half a thousand trains enter Madrid from the 10 most important 

Spanish cities, as well as from Paris and Lisbon). Freight transportation by train is also 

really important in Madrid. Every day 400 trains enter and leave the city, transporting 

150,000 tons of commodities. In fact, Madrid has the largest inland maritime customs 

centre in Europe.  

It is therefore no surprise that the number of vehicles in Madrid has increased by 

5.6% over the last decade, amounting in 2010 to a total of 1,917,382. This implies 
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1,202.5 vehicles per km. and 683.5 vehicles per 1,000 inhabitants. Two million drivers 

enter and leave the city on a daily basis. 

So, car pressure is increasing as well as its negative environmental impacts. 

Nevertheless, air pollution in Madrid can also be attributed to other factors, such as 

manufacturing and heating systems during winter, among others. 

As a result of the economic development of Madrid City and the increase in 

population, construction, especially residential construction, has become an extremely 

important industry for the economy of Madrid as a whole. According to the Spanish 

Regional Accounts, 2009, this sector contributes 8.6% of total GDP. Madrid is the city 

with the largest housing stock in Spain ―11.5% of the total, with a percentage of home 

ownership of 78.7% (2,275,188 out of 2,890,229) ― and is also the main housing 

market: in 2009 some 53,513 housing transactions were made in Madrid (Spanish 

Housing Office). The highest housing prices of the country are also registered in 

Madrid.  

The most central districts of the city are well established areas where few new 

houses are built and large projects are uncommon due to the lack of available land. 

Supply clearly exceeds demand, with the market for rent growing significantly. In 

addition, there is only a token presence of State-subsidized housing. Current supply 

focuses mainly on second-hand homes, the price of which, due to the characteristics of 

the area itself, has remained unchanged due to their quality and advantageous location. 

Prices will however tend to decrease as these two arguments lose strength.  

It is worth highlighting the districts of: a) Salamanca (prices ranging from 3,750 

to 11,549 euro/m2) which currently has a highly variable number of empty dwellings, 

most of which belong to the second-hand home market. The majority of sales made 

have affected dwellings in the lower echelon of prices, although the high level of 

purchasing power required to buy a house in the area does not significantly affect 

prices, which can rise in some cases; b) Chamartín (prices ranging from 4,225 to 11,183 

euro/m
2
) has a very small housing stock, generally open blocks with few individual 

houses, with communal gardens and swimming pools. New house development is 

minimal due to a lack of building sites, the majority of dwellings being second-hand, 

some 30 years old and medium to high quality; c) Hortaleza (prices ranging from 2,667 
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to 6,458 euro/m2), where there are mainly multi-family dwellings, although semi-

detached and luxury stand-alone houses are abundant in some areas. These districts are 

practically new and have grown markedly in recent years. In the vicinity of the M-40 

urban freeway, luxury houses are currently being built in closed housing developments 

with large communal areas. 

The districts on the periphery are characterized by the balance between public 

and private housing development. At present, new house prices are decreasing, while 

this downward trend is much more pronounced in the case of second-hand homes, with 

very few transactions being made. Building activity has stagnated, focusing on a very 

small number of developments to replace houses and with little sign of the market 

picking up. There is a large supply of housing, substantially more than demand, 

particularly in the second-hand home market, where many home-owners have put their 

dwellings up for sale due to being unable to meet their mortgage payments. 

As for pollution, Madrid City Council started to monitor and control air quality 

in 1968, initially with a manual system and then, from 1978, with an automatic system 

of fixed stations. Over the last 40 years, the improvement in industrial processes, 

combustion systems and the quality of fuels and technological progress in general, 

together with changes in habits and increased mobility, have given rise to changes in the 

consideration of the pollutants of greatest concern and, therefore, in the situations to be 

resolved. Clearly these innovations have brought about significant improvements in air 

quality with respect to some parameters, but have also given rise to new pollution 

problems and new aspects to focus on when assessing air quality. 

In the last decade, there has been a considerable improvement in sulphur 

dioxide, carbon monoxide and lead, pollution levels being much lower than those 

required by law. Nevertheless, as with most large European cities, problems persist with 

nitrogen dioxide, suspended particles and, especially, tropospheric ozone (see Figure 2). 

Following EU directives, in this article we have considered the following six 

pollutants: SO2, NOx —which is a generic term for mono-nitrogen oxides (NO and 

NO2)—, CO, PM10 and O3. According to the Department of Environmental Assessment, 

Control and Quality of Madrid, the mean values of those pollutants in the city in 2009 

were as follows (Figure 2): SO2 (10 micrograms/m
3
), suspended particulate matter (25 
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micrograms/dry standard m
3
), CO (0.4 milligrams/m

3
), NOX (89 micrograms/m

3
), NO2 

(54 micrograms/m
3
) and O3 (45 micrograms/m

3
). 

FIGURE 2: Mean values of SO2, NOx, NO2, CO, PM10 and O3 
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4.2. Data sets 

The issue of housing prices remains unresolved in Spain. This is the reason why 

we have constructed our own database for Madrid. The final database we have created 

contains information about the price and 33 characteristics of 11,796 owner-occupied 

single family homes. Figure 3a shows the location of the observed dwellings along 

with the location of the monitoring stations and Figure 3b the location of such stations 

in the city. Most of them are located in the urban centre and relatively few in peripheral 

areas. Therefore, the monitoring stations cover the area under study reasonably well, 

since most of the population of Madrid is concentrated in the urban centre. The database 

was created from the sales that took place in Madrid in the last quarter of 2009. As far 

as we know, it is the largest database ever used to analyze the Madrid housing market. It 

is important to note that the sample accounts for 90% of the sales in that quarter. The 

list of variables we have used mirrors the usual set used in the literature (see Table A1). 

Most of them have been codified as categorical to allow for more flexibility in the 

specification of the model. This allows for nonlinearities between the different levels of 

each variable.  
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FIGURE 3: Location of observed houses and air quality monitoring stations 

a) Location of houses and monitoring            

stations 

b) Urban map of Madrid including the 

monitoring stations location 

 
 

 

As for the data relative to pollution, they were provided by the Atmosphere 

Pollution Monitoring System of Madrid. As said above, we deal with six pollutants: 

SO2, NOx, NO2, CO, PM10 and O3. Note that in the specialized literature, hedonic 

specifications typically include only O3 (Banzhaf 2005; Hendrix et al., 2005; Anselin 

and Le Gallo 2006, among others),
 
PM10 (Chay and Greenstone 2005; Murthy et al., 

2009), or both O3 and PM10 (Anselin and Lozano-Gracia, 2008 is a recent example) 

since these are the most visible in the form of “smog” and are thought to have the 

greatest health impact. But a workable approach to environmental data should consider 

multiple contaminants. Obviously, including six variables in a spatial hedonic house 

price model is not an easy task, so we decided to incorporate an API that gathers the 

information contained in such variables. 

Pollution measurements were taken in February 2009 at 10a.m, and we have 

used the monthly average. There were two reasons for this decision: (i) February is the 

month of the year that records the most pollution; (ii) following the “population affected 

criterion”, 10 a.m. is a critical time.  

Another possibility (that used by Anselin and Lozano-Gracia, 2008) is to 

average the daily maxima during the worst quarter of a particular year. We rejected this 

option because the spatial structure of dependencies is not the same every hour, and the 

averaging process could lead to compensate different structures. In any case, the 

question of when to measure pollution is a core aspect, because the mismatch between 
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the location of monitoring stations and the sites where the houses have been transacted 

must be overcome by kriging, and the structure of the spatial dependencies of the level 

of a particular pollutant depends on the temporal argument and is very sensitive to 

temporal aggregation. 

In order to match the housing and pollution databases, we have predicted 

(kriged) the API at the locations corresponding to the observed dwellings accordingly. 

This alternative reduces the MSE estimated with the usual procedure by more than 7%.  

In light of the empirical data, we found ordinary kriging to be the best strategy for 

interpolating the above mentioned values. We used the maximum likelihood method to 

select the valid semivariograms. These semivariograms and their corresponding 

estimated parameters are displayed in Table 4. We used the GeoR package (Ribeiro and 

Diggle 2001) for that purpose as well as carrying out the cross validation procedure and 

obtaining kriged estimates. Figure 4b reports the interpolated values of the API at house 

sites and Figure 4a the quartile map of house prices. Results suggest a positive 

correlation between housing prices and the level of pollution. 

TABLE 4: Valid Semivariograms for pollutants 

Variable 
Semivariogram 

model 
Nugget effect Partial sill Range A

(a) 

B
(b)

 

CO Spherical 0.152 0.824 4000.00 0.00 1.00 

PM10 Spherical 0.776 0.243 3999.97 0.00 11.32 

O3 Wave 1.040 1.000 1940.40 0.00 1.00 

NOx Pure Nugget 1.000 0.000 3301.91 6.23 3345.9 

NO2 Pure Nugget 1.000 0.000 1184.26 0.00 1.00 

SO2 Exponential 0.084 1.093 3999.99 0.00 1.07 

(a) value (in radians) for the anisotropy angle; (b) value for the anisotropy ratio (always greater than 1). 
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FIGURE 4a: Quartile map of 

house prices 

FIGURE 4b: Interpolated (kriged) API values 

at houses sites 
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The information relative to the pollution perceived by residents has been taken 

from the Spanish Population and Housing Census. As stated in section 2, we prefer 

census information to survey information and we subjectively characterize the areas by 

the percentage of residents that think that the area where they live has serious pollution 

problems. The advantages of this approach include exhaustiveness, non-dimensionality 

and common range [0-1], which enormously facilitates interpretation. In addition, this 

approach could be interpreted as a way of averaging the results obtained in surveys 

based on annoyance scales. It could also be viewed as a consensus measure of air 

quality. Figure 5 reports the percentage of dwellings with pollution problems in every 

neighborhood. 
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FIGURE 5: Percentage of dwellings with pollution problems in every neighborhood 

(Census data) 

 
 

4.3 Results 

The starting point in our analysis is the nonspatial hedonic house price  model 

outlined in equation (3), where the dependent variable is the log price of dwellings and 

the explanatory variables are the individual and areal characteristics of such dwellings 

(see Table 1A). The first regressor we have included, apart from the intercept, is the 

variable indicative of the level of pollution API when we deal with objective measures 

or RP when we are interested in subjective resident perceptions.   

Model (3) has been estimated by OLS and TSLS when the pollution indicator is 

the interpolated API based on objective measures
2
. As said above, TSLS estimation 

                                                 
2
 All computations were been made using R (R Development Core Team 2010) and the spdep package 

(Bivand 2010). 
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responds to the potential errors-in-variables problem that arises from the use of API 

kriged values as a regressor. Table 5 reveals that the impact of API on the log price of 

houses in the OLS estimation is, surprisingly, positive and marginally significant at 

0.05%. However, with TSLS estimation the impact is negative and clearly insignificant 

(0.05 significance level). Nevertheless, the influence of API on housing prices does not 

appear to be relevant.    

TABLE 5: Summary of estimated impacts of pollution on dwelling prices 

Pollution indicator: API 

Model 
Total 

Impact 
t-value 

Direct 

Impact 
t-value 

Indirect  

Impact 

t-

value 

OLS (non 

spatial model) 
6.07E-03 2.347 6.07E-03 2.347 - - 

TSLS (non 

spatial model) 
-1.82E-03 -0.2334 -1.82E-03 -0.2334 - - 

SDM (ML) 4.11E-03 1.10544 1.86E-02 0.2524 -1.45E-02 -0.195 

SDM (TSLS) -2.14E-02 -0.29405 -0.084626 -1.0737 6.32E-02 0.577 

SAR (ML) 3.00E-03 0.8898 2.30E-03 0.8899 6.95E-04 0.887 

SAR (TSLS) 3.65E-03 1.119 2.89E-03 1.1192 7.60E-04 1.114 

SEM (ML) 7.04E-03 2.0184 7.04E-03 2.0184 - - 

Pollution indicator: RP 

Model 
Total 

Impact 
t-value 

Direct  

Impact 
t-value 

Indirect  

Impact 

t-

value 

OLS (non 

spatial model) 
-1.17e-01 -4.817 -1.17e-01 -4.817 - - 

SDM (ML) -1.44E-01 -3.7448 -6.67E-03 -0.4691 -1.37E-01 -3.561 

SAR (ML) -1.49E-01 -4.8263 -1.14E-01 -4.833 -3.46E-02 
-

4.6523 

SEM (ML) -1.13E-01 -3.5621 -1.13E-01 -3.5621 - - 

 
 

In order to ascertain which of the two estimates is the most suitable, we have 

performed a Hausman-Wu test, the null hypothesis of which is that the complete set of 

regressors, including API, are exogenous (Hausman, 1978). The test statistic is equal to 

1.155, with an associated p-value of 0.28, which means the OLS estimation could be 

consistent. However, we must be cautious when interpreting the results of the test as it 

depends among other things on the choice of instruments used for API (longitude and 

latitude in our case). 
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On the other hand, when resident perceptions are taken as an (subjective) 

indicator of the level of pollution, not subject to the possible bias of endogeneity as it is 

not interpolated, the impact of pollution on the nonspatial model is clearly negative and 

significant, as expected. The rest of variables, both individual and suburb or district, 

display the expected signs and are statistically significant. The only exceptions with a 

significance level of 10%, although they display the expected signs, are the suburb 

crime rate and the retired person/population ratio measured on a district scale. As 

regards the crime rate, on the one hand the score can be explained by the rest of 

variables; in fact, the regression of the crime rate over the rest of regressors yields an R
2
 

of almost 60%. Furthermore, both variables can become significant if we include spatial 

specifications, as we will see later.   

In order to test whether it would be more suitable to specify a spatial hedonic 

model instead of a nonspatial one, ML spatial dependence tests are performed on the 

residuals of all the foregoing nonspatial regressions (Anselin, 1998, 2007). The null 

hypothesis of these tests is the absence of spatial dependence in the residuals, as 

opposed to the alternative hypothesis of the SAR model (ML-lag tests) or SEM model 

(ML-Err tests). Table 6 shows that the null hypothesis is rejected for any given level of 

significance and more clearly rejected in the case of the ML-lag tests than with the ML-

Err tests (a circumstance that is repeated in the robust versions of the tests compared to 

erroneous spatial specifications). All the tests are performed with a neighborhood 

matrix W that includes the 6 nearest neighbors (other neighborhood matrices W have 

been tested recorded similar results). 

TABLE 6: Tests for spatial error dependence 

OLS residuals with API 

LMerr = 468.5008  d.f. = 1  p-value < 2.2e-16 

LMlag = 481.628  d.f. = 1  p-value < 2.2e-16 

RLMerr = 54.812  d.f. = 1  p-value = 1.327e-13 

RLMlag = 67.9392  d.f. = 1  p-value = 2.220e-16 

TSLS residuals with API 

LMerr = 472.433  d.f. = 1  p-value < 2.2e-16 

LMlag = 492.273  d.f. = 1  p-value < 2.2e-16 

RLMerr = 52.573  d.f. = 1  p-value = 4.146e-13 

RLMlag = 72.413  d.f. = 1  p-value = 2.220e-16 
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In the first place, these results suggest the need to include spatial dependence in 

the hedonic regression model. In the second place, it seems that, in regard to spatial 

specifications, the models with a spatial lag (SAR or SDM) fit the data better than SEM. 

Due to being general and robust (LeSage and Page, 2009), the first spatial model 

we propose is SDM, described by equation (4). This model is estimated by ML and 

TSLS when the API is included as an (objective) indicator of pollution, and by ML 

when the variable RP is included as an (subjective) indicator of pollution. Table 5 

reveals that, for SMD, the total impacts of the API on house prices are not significant in 

any cases and display alternating signs (positive in ML and negative in TSLS). In 

contrast, the total impact of the subjective indicator of pollution, estimated by ML, is 

clearly negative and significant, recording a similar absolute value to that of the 

nonspatial regression (-0.144 now compared to  -0.118 in OLS). Furthermore, as the 

parameter  estimated is positive and significant with a value of 0.26, the absolute value 

of the indirect impact estimated is considerable (-0.137) and clearly significant. It is 

worth highlighting that the value of the parameter  in the previous case (when the 

pollution indicator is RP) is also similar to the spatial parameter of the SDM model with 

API estimated by ML. However, when estimated by TSLS, the value of the parameter 

rises to 0.98. As a result, we must be careful when interpreting this model as there is 

some evidence of overparameterization, which makes it difficult to estimate the spatial 

parameters and separate total impact into direct and indirect impact estimated by TSLS. 

In addition, as we saw previously with the Hausman-Wu test, there is no empirical 

evidence that TSLS is suitable in this scenario. In any case, as total impact is not 

significant in any cases for the API (either with TSLS or ML) and clearly significant 

and negative for RP, it seems obvious that the latter is the most appropriate variable to 

use as an indicator of pollution and, moreover, the spatial specification is a clear 

improvement on the nonspatial specification.  

In order to ascertain whether the data allow a simpler spatial model than SDM to 

be specified, two LR tests are performed with null hypotheses from the SAR model 

(equation 8) and the SEM model (equation 9), respectively. In both cases, as detailed at 

the end of section 3, the alternative hypothesis is SDM, which is nested in both as 

particular cases. Table 7 shows the results of these tests for the subjective indicator of 
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pollution and, in both cases, the null hypothesis is clearly rejected indicating that SDM 

is always preferred to alternative models. In addition, the AIC is lower in this model 

than in all the others and, likewise, it also minimizes the value of residual standard 

deviation. Nevertheless, it is worth highlighting that, as can be observed in Table 5, the 

total impacts of the subjective indicator of pollution are always negative, significant and 

similar in value (from -0.128 for SEM to -0.149 for SAR) and the spatial dependence 

parameter  is always positive, significant and similar in size (0.24 for SAR, 0.26 for 

SDM and 0.29 for SEM). Furthermore, these estimations of  are similar to those 

obtained for the SAR and SEM models including the API variable as the objective 

pollution variable but, as in the case of the nonspatial OLS regression and the SDM 

spatial regression, the total impact of the API is not significant either when estimated by 

ML or TSLS. All the results are available upon request. 

TABLE 7: Model selection with subjective pollution indicator (RP) 

Model AIC LR(H1: SDM) logL(·) Parameters    or    

OLS -2947.8 - - 35 0.2132 - 

SDM -3498.9 - 1820.438 71 0.20631 0.26168 

SAR -3346.4 220.4952 1710.19 37 0.20843 0.23906 

SEM -3319.9 246.9634 1696.956 37 0.20817 0.29539 
 

In summary, it seems obvious that the measure of pollution people take into 

account in their utility function when assessing a house is subjective rather than 

objective pollution. In this sense, taking the value obtained in the SDM as the measure 

of total impact, an increase of ten percentage points in the number of residents that 

consider the neighborhood where the dwelling is located has pollution problems would 

reduce the price of houses in that neighborhood by 1.44%, which is economically 

significant and in line with the estimates obtained in Berezansky et al. (2010) for the 

city of Haifa. 

 

5. CONCLUSIONS 

The literature on hedonic housing prices has failed to measure the impact of 

pollution (or clean air) on the price of dwellings. Unlike economic theory, empirical 

research based on hedonic models reveals that the effect of air pollution on property 

value is far from conclusive. What is more, there are serious doubts that air pollution 
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significantly affects property prices. Additionally, the type of study undertaken may 

also generate different results. 

We have no doubts that the hedonic house price model is the appropriate 

instrument for estimating the effect of pollution on property prices, but we are 

convinced that the concept of air pollution that enters into the utility function of 

potential house buyers is perceived pollution rather than objective (measured) pollution. 

It is important to bear in mind that indirect methods like the hedonic strategy are based 

on actual transactions and empirical measurements, and assume that decision makers 

possess all the necessary information and always act rationally, attempting to maximize 

their personal utility. However, when deciding their location, house buyers weigh up 

one property or location against the other, their choices not necessarily being rational.  

We are also convinced that spatial strategies are needed when dealing with the 

prices of dwellings because it may not be appropriate to assume that the implicit prices 

of housing attributes are stationary. But, even using spatial hedonic strategies, results 

regarding the impact of measured pollution on property prices are not conclusive. In the 

best of cases, clean air has a negligible influence on house prices, which contradicts the 

hedonic theory. Of course, this finding reinforces our hypothesis that objective pollution 

is not the appropriate indicator to measure such an influence.  

In addition, interpolative methods for the estimation of pollution at observed 

house sites not only lead to an errors-in-variables problem, but also to very smooth 

predictions that could be far from realistic.  

The above reasons led us to compare the spatial hedonic house price model 

including interpolated values of pollution based on values measured at monitoring 

stations currently the usual model in the literature for the purpose we pursue to the 

same model including resident perceptions of pollution (a subjective indicator).  

On the basis of a massive database in Madrid a large city with excellent  

monitoring site/population and monitoring site/surface ratios we first classified Madrid 

neighborhoods according to their interpolated API (objective indicator) and RP 

(subjective indicator). Not surprisingly, the classification maps were found to be very 

different. More specifically, Pearson's correlation coefficient between objective and 

subjective values of pollution in Madrid neighborhoods stands at 0.20 and Spearman's 
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ranks coefficient is 0.39. 

The first finding we obtained is that the spatial argument is clearly relevant when 

it comes to estimating the impact of pollution on property prices. We found that the 

SDM was not only a general spatial hedonic strategy, but also the most appropriate for 

estimating the impact of pollution on property prices. We put both SDM to work, the 

one including API as a pollution indicator and the one including RP as a pollution 

variable, results confirmed our suspicions: While the model with API as a regressor 

does not confirm the hedonic theory, the one including the subjective indicator RP does. 

This is the second core finding in this paper. More specifically, according to the latter 

model, an increase of ten percentage points in the number of residents that consider that 

the neighborhood has pollution problems will reduce the price of the houses in the 

neighborhood by approximately 1.5%. This finding agrees with the results obtained in 

Berezansky et al. (2010), the only research we know using subjective indicators of 

pollution. Berezansky et al. (2010)  found a 1% drop in housing prices due to a 1-scale 

worsening of  perceived air pollution (on a 5-point scale), statistically significant at the 

1% level.   

Finally we encourage researchers to use hedonic spatial models including 

subjective indicators of pollution to confirm the results obtained for Madrid and Haifa. 

Notwithstanding, these results should be confirmed using other subjective indicators 

(based on annoyance surveys, for example). This could be a challenging avenue of 

research. 
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APPENDIX 

TABLE A1: List of variables 

Variable name Description 

Dependent variable  

Price House price 

Variable of interest  

API Objective Air Pollution Indicator 

RP (resident perceptions) Subjective Air Pollution Indicator 

Coordinates  

Coordinate x Longitude 

Coordinate y Latitude 

House characteristics  

Good condition Indicator variable for good condition 

Flat Indicator variable for flats 

Studio-apartment Indicator variable for studios 

Top-floor flat Indicator variable for  top-floor flats 

House Indicator variable for houses 

Age Age of the house 

Ground level Indicator variable for ground level 

Floor.1st Indicator variable for 1
st
 floor 

Floor.2nd - 3rd Indicator variable for  2
nd

  and 3
rd

 floors
 

Floor.4th - 5th Indicator variable for  4
th

 and 5
th

 floors 

Floor.6th or more Indicator variable for 6
th

 floor or higher 

Baths Number of bathrooms 

Garage Indicator variable for parking space 

Elevator Indicator variable for elevator 

Air conditioning Indicator variable for central air conditioning 

Swimming pool Indicator variable for swimming pool 

Monthly mortgage Monthly mortgage 

Areal characteristics  

M.30 Indicator for houses inside the M-30 

M.30.2 Indicator for houses close to the M-30 

Shopping area Indicator for houses in the shopping area 

Historical quarter Indicator for houses in the historical quarter 

Built up area Number of square meters of built-up area 

Density pop. distr. Population density in the district 

Retired (% distr.) Percentage of retired people in the district 

Children (% distr.) Percentage of children under 14 years 

Immigrants (% distr.) Percentage of immigrants in the district 

Crime Crime rate in the district 

Trees (% Ha. distr.) Trees per Ha. in the district 

Mortgage reference area Mean mortgage in the area 

 


